✔ Klarifikasi Lengkap Analisis Struktur Dan Cabang Pemakaiannya

Penjelasan Lengkap Analisis Struktur dan Cabang Pemakaiannya


Analisis struktur

Analisis struktur merupakan ilmu untuk memilih pengaruh dari beban pada struktur fisik dan komponennya. Adapun cabang pemakaiannya mencakup analisis bangunan, jembatan, perkakas, mesin, tanah, dll. Analisis struktur menggabungkan bidang mekanika teknik, teknik material dan matematika teknik untuk menghitung deformasi struktur, kekuatan internal, tekanan, reaksi tumpuan, percepatan, dan stabilitas. Hasil analisis tersebut digunakan untuk memverifikasi kekuatan struktur yang akan maupun telah dibangun. Dengan demikian analisis struktur merupakan pecahan penting dari desain rekayasa struktur.

Daftar isi

    1 Sejarah

    2 Elemen struktur

        2.1 Elemen lentur: Balok sederhana

        2.2 Elemen tekan: Kolom

        2.3 Pelat

        2.4 Membran

        2.5 Cangkang

    3 Tipe struktur

        3.1 Truss

        3.2 Kabel

        3.3 Lengkungan

        3.4 Kerangka

        3.5 Struktur bidang permukaan

    4 Beban

        4.1 Beban angin

        4.2 Beban gempa

        4.3 Tekanan Hidrostatik dan Tekanan Tanah

    5 Stabilitas struktur

    6 Metode analisis

        6.1 Analisis dengan dukungan komputer

    7 Sumber

Sejarah

Tulisan Galileo Gallilei mengenai lentur balok kantilever

Sejarah analisis struktur lahir dari ilmu mekanika yang merupakan cabang dari fisika. Tulisan tertua yang berisi ilmu ini dibuat oleh Archimedes (287-212 SM) yang membahas prinsip pengungkit dan prinsip kemampuan mengapung. Kemajuan yang besar diawali oleh aturan kombinasi vektor gaya oleh Stevinus (1548-1620), yang juga merumuskan sebagian besar dari prinsip-prinsip statika. Penyelidikan wacana lentur pertama kali dilakukan Galileo Galilei (1564-1642) namun gres dipecahkan dengan baik oelh Auguste Coloumb (1736-1806). Robert Hooke (1635 - 1703) menemukan kelakuan material yang dikenal dengan aturan Hooke sebagai dasar dari ilmu elastisitas. Metode kerja maya dikembangkan awalnya oleh Leibnitz untuk menuntaskan duduk kasus mekanika biasa. Selanjutnya pendekatan ini benar-benar sangat mempunyai kegunaan dan penggunaannya diperluas dalam banyak sekali kasus. Berbeda dengan ilmuwan lain yang menekankan persamaan analitik, Christian Otto Mohr (1835�1918) membuatkan metode grafis yang antara lain bundar Mohr (untuk memilih tegangan), dan diagram Williot-Mohr (untuk memilih perpindahan truss). Tokoh lain yang terlibat dalam perkembangan ilmu analisis struktur awal diantaranya, Marotte, D'Alembert, Euler (teori balok dan tekuk), Navier, Bernoulli (teori balok), Maxwell (Prinsip Maxwell), Betti (hukum Betti), St. Venant (torsi), Rayleigh, dan Castigliano (teori defleksi). Teori balok Euler-Bernoulli dibuktikan kebenarannya dengan diselesaikannya pembangunan Menara Eiffel di Paris. Sebelumnya teori itu hanya dibahas oleh para ilmuwan semata.

Di era modern, perkembangan besar ilmu materi dilakukan oleh ilmuwan Rusia-AS Stephen P. Timoshenko. Maha karyanya Strength of Material merupakan buku wajib mahasiswa teknik sipil hampir diseluruh dunia. Penemuan penting lain yaitu metode distribusi momen oleh Hardy Cross pada tahun 1930 dalam tulisannya di jurnal ASCE. Kontribusi lain Cross yaitu metode analogi kolom. Namun metode klasik yang mulai digantikan seiring dengan berkembangnya kemampuan dan kecepatan komputer. Maka dari itu penggunaan metode elemen sampai semakin meluas oleh insinyur struktur. Analisis yang sebelumnya memakan banyak kertas dengan ketelitian semakin berkurang dengan banyaknya variabel berhasil diatasi. Metode ini pertama kali digunakan dalam menganalisis gedung Opera Sydney oleh firma konsultan kenamaan Ove Arup. Bisa dikatakan metode elemen sampai merupakan inovasi terpenting dalam bidang analisis struktur.

Elemen struktur

Sebuah sistem struktur merupakan adonan antara elemen struktur dengan bahannya. Sangat penting bagi insinyur untuk mengklasifikasi struktur baik bentuk maupun fungsi dengan mengenali banyak sekali elemen yang menyusun struktur tersebut. Elemen struktur diantaranya :

Elemen lentur: Balok sederhana

Lentur balok

Sebuah balok langsing yang diberi perletakan sederhana akan menghasilkan lenturan. Sebutan duduk kasus lentur diartikan pada studi mengenai tegangan dan deformasi yang timbul pada elemen yang mengalami agresi gaya. Umumnya tegak lurus pada sumbu elemen sehingga salah satu tepi serat mengalami perpanjangan dan tepi serat lainnya mengalami penyusutan. Persamaan sederhana untuk memilih tegangan lentur pada balok dengan perletakan sederhana yaitu :

    {\sigma}= \frac{M y}{I_x}

dimana

    {\sigma} yaitu tegangan lentur

    M - momen pada sumbu netral

    y - jarak tegak lurus sumbu netral ke tepi

    Ix - momen inersia luasan pada sumbu netral x.

Elemen tekan: Kolom

Selain dinding pemikul beban, kolom juga merupakan elemen vertikal yang sangat banyak digunakan. Umumnya kolom tidak mengalami lentur secara eksklusif dikarenakan tidak ada beban tegak lurus pada sumbunya. Kolom dikategorikan bedasarkan panjangnya. Kolom pendek yaitu kolom yang kegagalannya berupa kegagalan material (ditentukan oleh kekuatan material). Kolom panjang yaitu kolom yang kegagalannya ditentukan oleh tekuk, jadi kegagalannya yaitu kegagalan lantaran ketidakstabilan, bukan lantaran kekuatan.

Pelat

Plat yaitu struktur palanar kaku yang secara khas terbuat dari material monolit yang tingginya yang kecil dibandingkan dengan dimensi lainnya. Umumnya sanggup dikatakan bahwa pelat yang terbuat dari material homogen mempunyai sifat yang sama pada segala arah.

Membran

Membran yaitu suatu struktur permukaan fleksibel tipis memikul beban terutama melalui proses tegangan tarik. Struktur membran cenderung sanggup mengikuti keadaan dengan cara struktur dibebani. Selain itu struktur ini sangat peka terhadap pengaruh aerodinamika dari angin. Efek ini sanggup mengakibatkan fluttering (getaran). Penstabilan bisa dilakukan dengan memberi gaya pra-tegang.

Cangkang

Cangkang yaitu bentuk struktural berdimensi tiga yang kaku dan tipis serta mempunyai permukaan yang lengkung. Beban-beban yang bekerja pada permukaan cangkang diteruskan ke tanah dengan menjadikan tegangan geser, tarik, dan tekan pada arah dalam bidang (in-plane) permukaan tersebut.

Tipe struktur

Kombinasi elemen struktur dan material yang menyusunnya disebut sebagai suatu sistem struktur. Setiap sistem dibangun dari satu atau lebih dari keempat tipe dasar struktur.[3]

Gedung John Hancock Center, merupakan adonan struktur kerangka kotak (tube) sebagai penahan beban gravitasi dan truss-x sebagai pengaku lateral.

Truss

Truss terdiri dari ikatan elemen balok tegangan tarik dan elemen kolom pendek dan biasanya berbentuk segitiga. Truss bidang disusun dari elemen-elemen yang berada pada bidang yang sama (2 matra) dan seringkali digunakan untuk jembatan-jembatan, penopang atap. Sebaliknya, truss ruang mempunyai elemen-elemen yang sanggup mengembang ke dalam tiga matra dan cocok untuk derek dan menara. Kemampuan bentangnya mulai dari 10 m sampai 125 m. Untuk kasus jembatan di Indonesia, kemampuan bentang truss tipe Warren bisa mencapai 60 m dibandingkan dengan jembatan balok prategang sederhana yang hanya bisa membentang sepanjang 30 m.

Kabel

Dua bentuk lain dari struktur yang digunakan untuk bentang panjang yaitu kabel dan bangunan berpola lengkungan. Kabel biasanya fleksibel dan menyangga beban-bebannya dalam tegangan tarik. Tidak mirip tegangan tarik yang mengikat, beban luar (eksternal) tidak digunakan sepanjang sumbu kabel, dan jadinya kabel mengalami bentuk kelengkungan tertentu.

Kabel umumnya digunakan untuk tujuan mirip menopang gelagar jembatan dan atap bangunan. Bila digunakan untuk tujuan ini, kabel mempunyai suatu laba dibandingkan balok dan truss khususnya untuk bentang melebihi 50 meter. Karena mereka berlaku sebagai tegangan tarik, kabel-kabel tidak akan menjadi stabil dan runtuh secara mendadak mirip yang biasa terjadi pada balok atau truss. Dalam aspek biaya, truss akan membutuhkan biaya perhiasan dalam konstruksinya dan terjadi peningkatan ketinggian akhir bentang yang meningkat. Penggunaan kabel-kabel pada sisi lain dibatasi hanya oleh berat dan metode-metode penggantungan.

Lengkungan

Lengkungan atau busur (Arch) mencapai kekuatannya dalam tegangan mampat, lantaran ia mempunyai suatu bentuk kurva yang berlawanan dibandingkan dengan kabel. Lengkungan meskipun harus dimampatkan semoga sanggup menjaga bentuknya dan jadinya pembebanan sekunder mirip gaya geser dan momen, harus dipertimbangkan dalam desainnya. Lengkungan seringkali digunakan dalam struktur jembatan, kubah, dan untuk pintu masuk dinding bangunan batu.

Kerangka

Kerangka-kerangka (Frames) sering digunakan dalam bangunan yang tersusun dari balok dan kolom yang hubungan berupa sambungan pin (sendi) ataupun sambungan kaku. Pembebanan pada suatu kerangka mengakibatkan pembengkokan anggota pecahan dan akhir dari hubungan sambungan kaku, struktur ini umumnya menjadi struktur tak tentu dari sudut pandang analisis. Kekuatan dari suatu kerangka diturunkan dari interaksi momen antara balok dan kolom pada sambungan kaku, dan hasilnya laba hemat dari penggunaan suatu kerangka bergantung pada peningkatan efesiensi dalam memakai ukuran balok yang lebih kecil terhadap peningkatan ukuran kolom dari agresi �balok-kolom� yang disebabkan pembengkokan pada sambungan-sambungan.

Struktur bidang permukaan

Struktur bidang permukaan dibuat dari suatu materi yang mempunyai ketebalan yang sangat tipis dibandingkan dengan ukuran dimensi lainnya. Kadangkala material ini sangat lentur dan sanggup mengambil bentuk suatu tenda atau struktur gelembung udara. Pada kasus ini material bekerja sebagai suatu struktur membran yang dibebankan oleh tegangan tarik murni.

Struktur bidang permukaan bisa juga dibuat dari materi kaku mirip beton pratekan atau ferro-semen. Sebagaimana mereka bisa dibuat sebagai pelat lipatan, silinder, atau parabola hiperbolik dan disebut pelat tipis atau cangkang. Struktur ini bekerja mirip kabel atau lengkungan lantaran mereka pada pokoknya menopang beban-beban dalam bentung tegangan tarik atau mampatan (tekanan) dengan pembengkokan yang sangat kecil. Struktur ini rumit dianalisis kecuali dengan dukungan komputer dengan metode elemen hingga.

Beban

Jembatan tipe Warren Truss di Leupung, Aceh. Disini beban mati yaitu berat rangka baja dan perkerasan jalan. Sedang beban hidupnya yaitu beban kendaraan, angin, dan gempa.

Setelah dimensi dari struktur itu diketahui, sangat penting kemudian memilih beban apa saja yang ditanggung dari struktur. Beban disain biasanya dispesifikasi oleh peraturan bangunan yang berlaku. Untuk wilayah aturan Indonesia digunakan SNI 03 1727 1989 Perencanaan Pembebanan Untuk Rumah dan Gedung. Ada dua jenis beban pada struktur yang harus dipertimbangkan dalam desain. Tipe pertama ini disebut dengan Beban mati yang merupakan berat dari kumpulan setiap anggota struktur maupun berat objek benda yang ditempatkan secara permanen. Sebagai contoh, kolom, balok, balok penopang (girder), pelat lantai, dinding, jendela, plumbing, alat listrik, dan lain sebagainya. Kedua yaitu Beban hidup, yang mana beban yang bergerak atau bervariasi dalam ukuran maupun lokasi. Contohnya yaitu beban kendaraan pada jembatan, beban pengunjung pada gedung, beban hujan, beban salju, beban ledakan, beban gempa, dan beban alami lainnya.

Beban angin

Bila struktur merintangi anutan angin, energi kinetik angin dikonversikan ke dalam energi potensial tekanan, yang mengakibatkan terjadinya suatu pembebanan angin. Efek angin pada struktur bergantung pada kerapatan dan kecepatan udara, sudut tiba angin, bentuk dan kekakuan struktur dan kekesaran permukaannya. Pembebanan angin bisa ditinjau dari pendekatan statik maupun dinamik.

Beban gempa

Gempa bumi menghasilkan pembebanan pada suatu struktur melalui interaksi gerakan tanah dan karakteristik respon struktur. Pembebanan ini merupakan hasil dari distorsi struktur yang disebabkan oleh gerakan tanah dan kekakuan struktur. Besarnya bergantung pada banyak dan tipe percepatan gerak tanah, masa dan kekakuan struktur. Pembebanan dan analisis gempa di Indonesia merujuk pada SNI 03 1726 2010 Standar Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung.

Tekanan Hidrostatik dan Tekanan Tanah

Bila struktur-struktur digunakan untuk menahan air, tanah atau materi glanural, tekanan yang dihasilkan oleh beban-beban ini menjadi suatu kriteria desain yang penting. Contohnya yaitu bendungan atau dinding penahan (retaining wall). Disini hukum-hukum hidrostatik dan mekanika tanah digunakan untuk memilih pembebanan struktur.

Stabilitas struktur

Pada struktur stabil, deformasi yang diakibatkan beban pada umumnya kecil dan gaya dakhil (internal) yang timbul dalam struktur mempunyai kecenderugan mengembalikan bentuk semula apabila bebannya dihilangkan. Pada struktur tidak stabil, deformasi yang diakibatkan oleh beban pada umumnya mempunyai kecenderungan untuk terus bertambah selama struktur dibebani. Struktur yang tidak stabil gampang mengalami keruntuhan secara menyeluruh dan seketika begitu dibebani. Sebagai contoh, bayangkan tiga buah balok disusun membentuk rangka segiempat. Berikan gaya horizontal diujung rangka atas balok tersebut. Maka usang kelamaan rangka itu roboh. Salah satu cara untuk membuatnya lebih stabil dengan bracing atau mengisinya dengan dinding. Selain dengan yang disebutkan tadi, ketidakstabilitas struktur bisa diakibatkan juga oleh kelemahan kolom yang diakibatkan tekuk maupun pengaruh P-Delta.

Metode analisis

Analisis Cremona untuk truss sederhana.

Untuk bisa menghasilkan analisis yang akurat, insinyur struktur harus memperoleh informasi mengenai beban struktur, geometri, kondisi tumpuan, dan sifat bahan. Hasil dari analisis biasanya berupa reaksi tumpuan, tegangan, geser, momen, puntir, dan perpindahan. Informasi ini kemudian dibandingkan dengan kriteria kondisi kegagalan. Analisis struktur lanjutan menyertakan respon dinamika, stabilitas dan sikap non-linier. Ada dua pendekatan analisis yang umum yang : pendekatan analitik dan grafis. Pendekatan analitik menerapkan mekanika bahan, teori elastisitas dengan jalan analisis matematika mirip vektor, matrik ataupun elemen hingga. Pendekatan grafis menerapkan prinsip-prinsip geometri struktur dan garis sebagai beban untuk menganalisis. Bagaimanapun terkadang prinsip mekanika klasik tetap diterapkan mirip untuk mengecek kesetimbangan dan untuk menganalisis balok statis tertentu.

Pendekatan analitik untuk menganalisis kerangka atau balok lentur diantaranya yaitu :

    Metode Cross

    Metode Takabeya

    Metode distribusi momen

    Metode analogi kolom

    Metode kerja maya (energi virtual)

    Metode kekakuan dan kelenturan

    Metode defleksi kemiringan(slope deflection).

Sedangkan untuk menganalisis kestabilitas struktur (kemantapan kolom) diantaranya :

    Metode tekuk Euler

    Teori modulus ganda

    Teori modulus singgung

    Metode Southwell

    Metode energi

Analisis pelat :

    Teori Khirchoff-Love

    Teori Mindlin-Reissner

    Teori Reissner�Stein

Dengan pendekatan grafis :

    Metode Cremona

    Diagram defleksi Williot-Mohr

    Analisis grafis pada analisis plastis (bukan elastis) kerangka atau balok.

Analisis dengan dukungan komputer

STAAD.Pro yaitu salah satu aktivitas analisis struktur.

Hingga selesai tahun 1950an, analisis beberapa tipe struktur tak-tentu panjang dan rumit. Analisis struktur dengan banyak sambungan dan anggota (truss ruang, contohnya) memerlukan beberapa bulan perhitungan oleh tim insinyur berpengalaman. Itupun perlu banyak perkiraan yang disederhanakan sehingga hasilnya kadang justru menjadikan keraguan. Sekarang, aktivitas komputer yang tersedia bisa menciptakan pekerjaan lebih cepat dan akurat. Beberapa pengecuali tetap ada. Jika struktur mempunyai bentuk yang tidak lazim dan komplek mirip dinding tebal wadah nuklir atau lambung kapal selam, analisis komputer akan lebih rumit dan memakan waktu yang banyak.

Kebanyakan aktivitas komputer ditulis untuk analisis orde-pertama, dimana diasumsikan kelakuan linear-elastis  anggota tidak mempunyai pengaruh akhir deformasi  tidak ada pengurangan kekakuan akhir beban tekan. Ketika duduk kasus lebih rumit,dianjurkan memakai analisis orde kedua dengan memperhatikan kelakuan in-elastis, perubahan geometri, dan pertimbangan lain yang dianggap menghipnotis sikap struktur.

Belum ada Komentar untuk "✔ Klarifikasi Lengkap Analisis Struktur Dan Cabang Pemakaiannya"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel